CS 267 Applications of Parallel Computers
Lecture 23:

Solving Linear Systems arising from PDEs - |

James Demmel

http://www.nersc.gov/~dhbailey/cs267/Lectures
Lect_23 2000.ppt
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Outline

° Review Poisson equation

° Overview of Methods for Poisson Equation

N

° Jacobi’s method

Reduce to sparse-matrix-vector multiply
° Red-Black SOR method | Need them to understand Multigrid

° Conjugate Gradients
°FFT

° Multigrid (next lecture)
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Poisson’s equation arises in many models

° Heat flow: Temperature(position, time)
° Diffusion: Concentration(position, time)

° Electrostatic or Gravitational Potential:
Potential(position)

° Fluid flow: Velocity,Pressure,Density(position,time)
° Quantum mechanics: Wave-function(position,time)

° Elasticity: Stress,Strain(position,time)
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Relation of Poisson’s equation to Gravity, Electrostatics

° Force on particle at (x,y,z) due to particle at 0 is
-(x,y,2)/rA3, where r = sqrt(x *+y* +z°)

° Force is also gradient of potential V = -1/r
=-(d/dx V, d/dy V, d/dz V) = -grad V

>V satisfies Poisson’s equation (try it!)

Ralationchip of Potential ¥V and Foree —grad V in 2D
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Poisson’s equation in 1D
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Graph and “stencil”
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2D Poisson’s equation

° Similar to the 1D case, but the matrix 7' is now

(4 - 1 \ Graph and “stencil”
1 4 -1 -1
1 4 1
-1 4 -1 -1
T = 1 1 4 4 1
-1 1 4 1
-1 4 -
-1 4 4 -
\ -1 1 4

° 3D is analogous
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Algorithms for 2D Poisson Equation with N unknowns

Algorithm Serial PRAM Memory #Procs
° Dense LU N3 N N2 N2
° Band LU N2 N N3/2 N
° Jacobi N2 N N N
° Explicit Inv. N2 log N N2 N2
° Conj.Grad. N 3/2 N Y2*log N N N
° RB SOR N 3/2 N 1/2 N N
° Sparse LU N 3/2 N 1/2 N*log N N
° FFT N*log N log N N N
° Multigrid N log? N N N
° Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication
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Short explanations of algorithms on previous slide

o

o

Sorted in two orders (roughly):
+ from slowest to fastest on sequential machines
+ from most general (works on any matrix) to most specialized (works on matrices “like” Poisson)

Dense LU: Gaussian elimination; works on any N-by-N matrix

Band LU: exploit fact that T is nonzero only on sqrt(N) diagonals nearest main
diagonal, so faster

Jacobi: essentially does matrix-vector multiply by T in inner loop of iterative
algorithm

Explicit Inverse: assume we want to solve many systems with T, so we can
precompute and store inv(T) “for free”, and just multiply by it

* It’s still expensive!

Conlju ate Gradients: uses matrix-vector multiplication, like Jacobi, but
exploits mathematical properies of T that Jacobi does not

Red-Black SOR (Successive Overrelaxation): Variation of Jacobi that exploits
yet different mathematical properties of T

« Used in Multigrid

Sparse LU: Gaussian elimination exploiting particular zero structure of T

FFT (Fast Fourier Transform): works only on matrices very like T

Multigrid: also works on matrices like T, that come from elliptic PDEs

Lower Bound: serial (time to print answer); parallel (time to combine N inputs)

Details in class notes and www.cs.berkeley.edu/~demmel/ma221
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Comments on practical meshes

° Regular 1D, 2D, 3D meshes

* Important as building blocks for more complicated meshes
» We will discuss these first

° Practical meshes are often irregular

« Composite meshes, consisting of multiple “bent” regular meshes
joined at edges

* Unstructured meshes, with arbitrary mesh points and
connectivities

- Adaptive meshes, which change resolution during solution
process to put computational effort where needed

° In later lectures we will talk about some methods on
unstructured meshes; lots of open problems
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Composite mesh from a mechanical structure

Mechanical Structure with Mesh
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Converting the mesh to a matrix

Mesh numbered in natural order
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Irregular mesh: Tapered Tube (multigrid)

Example of Prometheus meshes
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Adaptive Mesh Refinement (AMR)

°Adaptive mesh around an explosion

°John Bell and Phil Colella at LBL (see class web page for URL)

°Goal of Titanium is to make these algorithms easier to implement
in parallel

CS267 L24 Solving PDEs.14 Demmel Sp 1999



Jacobi’s Method

° To derive Jacobi’s method, write Poisson as:
u(i,j) = (u(i-1,j) + u(i+1,j) + u(i,j-1) + u(i,j+1) + b(i,j))/4
° Let u(i,j,m) be approximation for u(i,j) after m steps
u(i,j,m+1) = (u(i-1,j,m) + u(i+1,j,m) + u(i,j-1,m) +
u(i,j+1,m) + b(i,j)) / 4

°l.e., u(i,j,m+1) is a weighted average of neighbors

° Motivation: u(i,j,m+1) chosen to exactly satisfy
equation at (i,j)

° Convergence is proportional to problem size, N=n?2
« See http:/lwww.cs.berkeley.edu/~demmel/lecture24 for details

° Therefore, serial complexity is O(N?)
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Parallelizing Jacobi’s Method

° Reduces to sparse-matrix-vector multiply by (nearly) T
Um+1)=(T/4 -1) * U(m) + B/4
° Each value of Uim+1) may be updated independently

» keep 2 copies for timesteps m and m+1

° Requires that boundary values be communicated
* if each processor owns n?/p elements to update

« amount of data communicated, n/p per neighbor, is relatively small
if n>>p

Partitioning of the 2D Heat Eguation
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Successive Overrelaxation (SOR)

> Similar to Jacobi: u(i, Lm+1) is computed as a linear
combination of neighbors

° Numeric coefficients and update order are different

° Based on 2 improvements over Jacobi

* Use “most recent values” of u that are available, since these are
probably more accurate

» Update value of um+1) “more aggressively” at each step

° First, note that while evaluating sequentially
« u(i,j,m+1) = (u(i-1,j,m) + u(i+1,j,m) ...

some of the values are for m+1 are already available
* u(i,j,m+1) = (u(i-1,j,latest) + u(i+1,j,latest) ...

where latest is either m or m+1
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Gauss-Seidel

> Updating left-to-right row-wise order, we get the
Gauss-Seidel algorithm

fori=1ton
forj=1ton
u(i,j,m+1) = (u(i-1,j,m+1) + u(i+1,j,m) + u(i,j-1,m+1) + u(i,j+1,m)
+ b(i,j)) / 4

> Cannot be parallelized, because of dependencies, so
instead we use a “red-black” order

forall black points u(i,j)
u(i,j,m+1) = (u(i-1,j,m) + ...

forall red points u(i,j)
u(i,j,m+1) = (u(i-1,j,m+1) + ...

° For general graph, use graph coloring
°Graph(T) is bipartite => 2 colorable (red and black)
> Nodes for each color can be updated simultaneously
° Still Sparse-matrix-vector multiply, using submatrices
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Successive Overrelaxation (SOR)

° Red-black Gauss-Seidel converges twice as fast as Jacobi, but
there are twice as many parallel steps, so the same in practice

° To motivate next improvement, write basic step in algorithm as:
u(i,j,m+1) = u(i,j,m) + correction(i,j,m)

° If “correction” is a good direction to move, then one should move
even further in that direction by some factor w>1

u(i,j,m+1) = u(i,j,m) + w * correction(i,j,m)

° Called successive overrelaxation (SOR)
° Parallelizes like Jacobi (Still sparse-matrix-vector multiply...)

° Can prove w = 2/(1+sin(n/(n+1)) ) for best convergence

* Number of steps to converge = parallel complexity = O(n), instead of O(n
for Jacobi

- Serial complexity O(n3) = O(N%2), instead of O(n%) = O(N?) for Jacobi

?)
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Conjugate Gradient (CG) for solving A*x=b

° This method can be used when the matrix A is
- symmetric, i.e., A= AT
» positive definite, defined equivalently as:
- all eigenvalues are positive
- xT* A*x> 0 for all nonzero vectors s
- a Cholesky factorization, A = L*LT exists

° Algorithm maintains 3 vectors
» X = the approximate solution, improved after each iteration
e r=theresidual, r=A*x-b
* p = search direction, also called the conjugate gradient

° One iteration costs
» Sparse-matrix-vector multiply by A (major cost)
» 3 dot products, 3 saxpys (scale*vector + vector)

° Converges in O(n) = O(N'?2) steps, like SOR
« Serial complexity = O(N3/2)
» Parallel complexity = O(N’”2 log N), log N factor from dot-products
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Summary of Jacobi, SOR and CG

° Jacobi, SOR, and CG all perform sparse-matrix-vector
multiply

° For Poisson, this means nearest neighbor
communication on an n-by-n grid

° It takes n = N2 steps for information to travel across
an n-by-n grid

> Since solution on one side of grid depends on data on
other side of grid faster methods require faster ways
to move information

 FFT
* Multigrid
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Solving the Poisson equation with the FFT

° Motivation: express continuous solution as Fourier series
* u(x,y) = 2 Xk Uujk sin(w ix) sin(m ky)
* ujk called Fourier coefficient of u(x,y)

° Poisson’s equation §%u/dx? + 52u/dy? = b becomes
Y Xk (-mi2 - k2) ujk sin(T ix) sin(m ky)

= 2 Xk bjk sin(m ix) sin(7 ky)

where bjk are Fourier coefficients of b(x,y)

o

° By uniqueness of Fourier series, ujk = bjk / (-i? - Tk?3)

° Continuous Algorithm (Discrete Algorithm)
° Compute Fourier coefficient bjk of right hand side
°  Apply 2D FFT to values of b(i,k) on grid
° Compute Fourier coefficients ujk of solution

(o]

Divide each transformed b(i,k) by function(i,k)
° Compute solution u(x,y) from Fourier coefficients

(o]

Apply 2D inverse FFT to values of b(i,k)
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Serial FFT

° Let i=sqrt(-1) and index matrices and vectors from 0.

° The Discrete Fourier Transform of an m-element
vector v is:

F*v

Where F is the m*m matrix defined as:
F[j,k] = @ (%

Where @ is:

® = e (2nm) = cos(2n/m) + i*sin(2n/m)

° This is a complex number with whose mt" power is 1
and is therefore called the mt" root of unity

°E.g., form = 4:
o = 0+1%i, ®? = -1+0%i, ®° = 0-17i, ©* = 1+0%i,
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Using the 1D FFT for filtering
° Signal = sin(7t) + .5 sin(5t) at 128 points
° Noise = random number bounded by .75
° Filter by zeroing out FFT components < .25
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Using the 2D FFT for image compression

° Image = 200x320 matrix of values

°> Compress by keeping largest 2.5% of FFT
components
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Related Transforms

° Most applications require multiplication by both F
and inverse(F).

° Multiplying by F and inverse(F) are essentially the
same. (inverse(F) is the complex conjugate of F
divided by n.)

° For solving the Poisson equation and various other
applications, we use variations on the FFT

* The sin transform -- imaginary part of F
* The cos transform -- real part of F

° Algorithms are similar, so we will focus on the
forward FFT.
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Serial Algorithm for the FFT

° Compute the FFT of an m-element vector v, F*v

(FV)ll= Z¢-o Fk)v(k)

° Where V is defined as the polynomial

m-1

> ® 0 * y(k)
> (@)% v(k)
V(@)

V) =2 xK* v(k)
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Divide and Conquer FFT
>V can be evaluated using divide-and-conquer
V) =2, (0)** v(k)
= v[0] + x?*v[2] + x**Vv[4] + ...
+ x*(v[1] + x2*v[3] + x**Vv[5] + ...)
= Voyen(X?) + X*V,gq(x2)

°V has degree m, so V

and V_,, are polynomials of
degree m/2-1 odd

even

° We evaluate these at points (@ 1)? for 0<=j<=m-1
° But this is really just m/2 different points, since
(@ (*m2) )2 = (@ i*p ™2 )2 = (@ 2*p ) = (B §)?
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Divide-and-Conquer FFT
FFT(v, v, m)

if m =1 return v[0]

else
Veven = FFT(V[0:2:m-2], & 2, m/2)
Vogqg = FFT(V[1:2:m-1], ® 2, m/2) precomputed
m-vec = [@?, ®, ... © (M2-1)] /
return [v,,., + (B-vec .* v ),

Veven - (m-vec '* Vodd) ]
° The .* above is component-wise multiply.

° The [...,...] is construction an m-element vector from 2 m/2
element vectors

This results in an O(m log m) algorithm.
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An lterative Algorithm

° The call tree of the d&c FFT algorithm is a complete
binary tree of log m levels

FFT(0,1,2,3,...,15) = FFT(xxxXx)

FFT(0,2,...,14) = FFT(xxx0) FFT(1,3,...,15) = FFT(xxx1)
FFT(xx00) FFT(xx10) FFT(xx10) FFT(xx11)

FFT(x000) FFT(x100) FFT(x010) FFT(x110) FFT(x001) FFT(x101) FFT(x011) FFT(x111)

/N /N /N /N /N /N /N N

FFT(0) FFT(8) FFT(4) FFT(12) FFT(2) FFT(10) FFT(6) FFT(14) FFT(1) FFT(9) FFT(5) FFT(13) FFT(3) FFT(11) FFT(7) FFT(15)

° Practical algorithms are iterative, going across each
level in the tree starting at the bottom

° Algorithm overwrites v[i] by (F*v)[bitreverse(i)]
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Parallel 1D FFT

° Data dependencies in
1D FFT

» Butterfly pattern

°> A PRAM algorithm
takes O(log m) time

« each step toright is
parallel

» there are log m steps

° What about
communication cost?

> See LogP paper for
details
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Block Layout of 1D FFT

Block Data Layout of an m = 16-point FFT onto p=4 Processors

° Using a block layout P
(m/p contiguous elts per ° ™7 A A
processor R N 7 AVA v ai—
0 0010
: z:: VAT X XXX
° No communication in o
last log m/p steps O s S/ /AN K X
. ot LYYV s s hY SN T
JUULLLEY
2 lﬂﬂﬂW
° Each step requires fine-  : |
gr?meo: communication  : [
In first log p steps T ———
S LA X XXX
3 1110
3 1111 + ¥ v 2

logip) steps
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Cyclic Layout of 1D FFT

° Cyclic layout (only 1
element per
processor, wrapped)

° No communication
in first log(m/p)
steps

> Communication in
last log(p) steps
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Parallel Complexity

° m = vector size, p = number of processors
> f =time per flop =1

o, = startup for message (in f units)

° B = time per word in a message (in f units)

° Time(blockFFT) = Time(cyclicFFT) =
2*m*log(m)/p
+ log(p) * a
+ m*log(p)/p *
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FFT With “Transpose”

Transpose Algorithm for an m = 16-point FFT on p=4 Processors

° If we start with a c?/clic Procese

layout for first log(p) TN 7 RS

steps, there is no R/ \VZ SO

communication BR\W/A AAN=Y
o Then trans pose the 1] 0100 %{}!4;;;:’;’;‘: o 0100
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Why is the Communication Step Called a Transpose?

° Analogous to transposing an array

°View as a 2D array of n/p by p

° Note: same idea is useful for uniprocessor caches

Block Layout.
Processor
1] 1 2 3
1] d 8 12
1 3 9 13
2 i 10 14
3 7 11 153
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Complexity of the FFT with Transpose

° If communication is not overlapped

° Time(transposeFFT) =

2*m*log(m)/p same as before
+ (p-1) * o was log(p) * o
+ m*(p-1)/p? * was m* log(p)/p * B
° Transpose version sends less data, but more
messages

° If communication is overlapped, so we do not pay
for p-1 messages, the second term becomes simply
o, rather than ?p-1)oc.

° This is close to optimal. See LogP paper for details.
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Comment on the 1D Parallel FFT

° The above algorithm leaves data in bit-reversed order
« Some applications can use it this way, like Poisson
» Others require another transpose-like operation
* Is the computation location-dependent?

° Other parallel algorithms also exist

» A very different 1D FFT is due to Edelman (see http://lwww-
math.mit.edu/~edelman)

« Based on the Fast Multipole algorithm
* Less communication for non-bit-reversed algorithm
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Higher Dimension FFTs

°FFTs on 2 or 3 dimensions are define as 1D FFTs on
vectors in all dimensions.

°E.g., a 2D FFT does 1D FFTs on all rows and then all
columns

° There are 3 obvious possibilities for the 2D FFT:

* (1) 2D blocked layout for matrix, using 1D algorithms for each row
and column

* (2) Block row layout for matrix, using serial 1D FFTs on rows,
followed by a transpose, then more serial 1D FFTs

» (3) Block row layout for matrix, using serial 1D FFTs on rows,
followed by parallel 1D FFTs on columns

* Option 1 is best

°For a 3D FFT the options are similar
« 2 phases done with serial FFTs, followed by a transpose for 3rd
» can overlap communication with 2nd phase in practice
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